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Intermittency transitions to strange nonchaotic attractors in a quasiperiodically
driven Duffing oscillator

A. Venkatesan and M. Lakshmanan
Center for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirappalli, 620 024, India

A. Prasad and R. Ramaswamy
School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
(Received 7 April 1999; revised manuscript received 13 October)1999

Different mechanisms for the creation of strange nonchaotic attra¢B#\s) are studied in a two-
frequency parametrically driven Duffing oscillator. We focus on intermittency transitions in particular, and
show that SNAs in this system are created through quasiperiodic saddle-node bifurgieakintermit-
tency as well as through a quasiperiodic subharmonic bifurcatfgpe-IIl intermittency. The intermittent
attractors are characterized via a number of Lyapunov measures including the behavior of the largest nontrivial
Lyapunov exponent and its variance, as well as through distributions of finite-time Lyapunov exponents. These
attractors are ubiquitous in quasiperiodically driven systems; the regions of occurrence of various SNAs are
identified in a phase diagram of the Duffing system.

PACS numbeis): 05.45.Ac, 05.45.Df, 05.45.Pq

[. INTRODUCTION iting a scaling behavior characteristic of type-I intermittency
[17]. The quasiperiodic subharmonic bifurcation, on the
Interest in the dynamics of quasiperiodically driven sys-other hand, gives rise to type-Ill intermittent SN, when
tems has grown in recent years largely due to the existenca torus-doubled attractor is interrupted by a subharmonic bi-
of interesting behavior such as strange nonchaotic dynamicurcation, resulting in the inhibition of torus-doubling se-
The initial work of Grebogiet al.[1] showed that with qua- quence.
siperiodic forcing, nonlinear systems could have strange Our prime concern in the present work is to understand
nonchaotic attractor€SNAS), namely, attractors with a frac- how a typical nonlinear system, namely, the Duffing oscilla-
tal geometry, but with a nonpositive Lyapunov exponent.tor, responds to a quasiperiodic forcing and exhibits different
Subsequent studies have dealt with a number of importaritynamical transitions involving SNAs. In particular, inter-
issues pertaining to theoretical as well as experimental asnittencies through which SNAs are formed have been inves-
pects[2—16] of SNAs. tigated, in addition to standard mechanisms like fractaliza-
While the existence of SNAs is firmly established, a question and torus collision. Although some of these mechanisms
tion that remains interesting is the mechanism or bifurcationfiave already been identified in certain maps and continuous
through which these are created from regular or chaotic atsystemg3,4,7,9, in order to generalize such dynamical tran-
tractors. To date a number of different scenarios have beegitions in real physical systems we undertake our investiga-
identified: these include torus doubling to chaos via SNAdion on a damped, two frequency parametrically driven
[3], fractalization of the torup4], the re-emergence of a torus double-well Duffing oscillatof18]
doubling sequence and the birth of SN|&§, the occurrence

of SNAs via blowout bifurcation[6], the appearance of X+hx—[1+A(R cost+cosQt)]x+x3=0, (oh]
SNAs through type-I intermittent phenomenah or type-ll
intermittency[9], and so or{10-16. which is a well-suited moddl19] for buckled beam oscilla-

Scenarios for the formation of SNAs often have parallelstions. The simplest experimental realization of the above
in scenarios for the formation of chaotic attractors. The mosequation, the magnetoelastic ribbon, has been extensively
common route to SNAs is the gradual “fractalization” of a studied[18,20, and is the first system where SNAs were
torus[4] where an amplitude or phase instability causes thebserved14] with ) chosen to be an irrational number. The
collapse of the torus, which becomes progressively more anelxistence of several routes to SNAs in Ef). suggests that
more “wrinkled” as a parameter in the system changesthere may be experimental realizations of different types of
eventually becoming a fractal attractor. This is also the leasBNAs which are deserving of further study; our analysis here
well understood mechanism for the formation of SNAs sinces thus of some experimental relevance.
there is no apparent bifurcation, unlike the crisislike torus The parametrically driven Duffing oscillatpEq. (1)], is a
collision mechanisms identified by Heagy and Hamip@l rich dynamical system, possessing a variety of regular,
and Feudel, Kurths, and PikovsKit1]. In the former in-  strange nonchaotic, and chaotic attractors. We concentrate on
stance, a period-doubled torus collides with its unstable parthe intermittent transitions to SNAs and the mechanism by
ent, while in the latter, a stable and unstable torus collide atvhich they arise in a range iR-h parameter spacéln ad-

a dense set of points, leading to SNAs. The quasiperiodidition to the intermittency routes mentioned above, Yal-
analog of a saddle-node bifurcation gives rise to SNAscinkaya and Lai[6] showed that on-off intermittency can
through the intermittent routr], with the dynamics exhib- also be associated with SNAs created through a blowout bi-
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furcation, when a torus loses its transverse stali6y This b=1, 6=0. @)
bifurcation does not occur in the present system in the range '

of parameters studied. Note that the three equilibrium points of the system Aor

SNAs represent a dynamics which is intermediate be-_ correspond to-x+x3=0, so that there are two stable

tween regular and chaotic motion, and therefore they need tp pointsxS =+ 1 and an unstable fixed point &f=0
be distinguished from chaotic attractors and quasiperiodic Figure ](a)iis ?he overall phase diagram for the sy.stem

(torus attractors. There are several quantitative criteria that . = = . :

can be used to determine the strange nonchaotic natu ith :jhﬁ paramgt%rA_FhO.::)jandQ_— (I\/§+ 12./2’ f|xed,_v¥h|le ted
[1-13. The most direct characterization of SNAs is throughnuzrir?eric;rli Vljisrilr?g. a %u%ﬂ?or?(;(:e? eR%L:%;O_rllsut?;e ;Tg(e)?i;ﬁni
the largest Lyapunov exponefwhich should be nonposi- with an adaptive step size. The dynamical states and transi-

tive) and the existence of a nontrivial fractal structure. Weti ns amona them are characterized through the L oV
employ these criteria in the present work in order to identify ons among theém aré characterize oug € Lyapuno

strange nonchaotic behavior: Lyapunov exponents are caIcG’—XpOnents and their variance, as w_eII as a number of_dlffer-
lated in the usual manng21], and the correlation dimension ent measures. The reIevant_ det"?"'s of the_calc_ulatlon of
(calculated through the standard Grassberger-Procaccia algloyapgnov exponents and their variance are given in the Ap-
rithm [22]) is used to determine whether or not the attracto endix. . . -
is fractal. In addition to the fact that Lyapunov exponents are Thgre are a number of d|ff¢rent regions where pe”?d'.c’
negative on SNASs, the variance of the Lyapunov exponent haotic, and strange nonchaotic attraptors can be found: Figs.
on SNAs is also large(Here, by variance, we mean the (b), 1(9)’ and_ Id)_are blowups Of. regions W1, W2 and W3
fluctuations in the measured value of finite-time LyapunovreSpeCt'Vely'. in Fig. (). The various features indicated in
exponents, as calculated from several realizations of the d)}-. . . ; ;
namics; see the AppendixThis quantity also shows charac- sitions are elucidated in the following. . .
teristic changes across transitions to SNAmrticularly ".I'he general features of the phasg d|agr§1m fall mto a fa-
when there are crisp§8]. m|I|_ar pattern. Compared to the Duffing oscillator dnven-by
A host of other properties have been used to characteriz@ single frequencithe case oR=0), there are new chaotic

SNAs, such as the scaling of spectral features or the “phasréegions C1, .Cz' and C3, and, bordering the chaotic regions,
sensitivity” [11]. SNAs are characterized by specific signa-one has regions where the attractors are strange and noncha-

tures in their frequency spectrum, wherein they admit powe t'cf' Thz d|ﬁer|ent reglonst vghﬁre th)JaS|pe_rlodlcfat:]ractt_orst(t:an
law relationN(o)~ o~ %, 1<a<2, where the spectral distri- € Tound are aiso separated here by regions ot chaolic attrac-

bution functionN() is defined s the number of peaks in 2ic 0 SLCEL 10 20 S O OCR TR the el
the Fourier amplitude spectrum larger than some vatue 9eq P q

; : " s . S
Another measurgll] is based on the presence of a compli- fium pointsx” andx; , while TS denotes a small quasiperi-

cated path between the real and imaginary Fourier amp|i9dic orbit which oscillates around one of the stable fixed

tudes which reflects the fractal geometry of SNAS points alone, depending on the initial conditions. The strip
Finer distinctions among SNAs formed via .different denoted D contains interesting dynamical states, both chaotic

mechanisms can be made by use of various measures, e_Bt_tractors and SNAs, between which there are a number of

the nature of the variation of the Lyapunov exponents and it agsl\ilti,;\)anre found in a large number of regions, some of
variance near the transition values of the control parameter  : !
[8], the nature of the bursting and scaling laws in the case ofNich are marked GF1, GF2, GF3, HH1, HH2, S1, and S3

intermittent types SNAg7], the statistical properties of (Pased on the scenarios responsible for their crentitin
finite-time Lyapunov exponenf@3], and so on. should also be pointed out that boundaries separating differ-

In Sec. II. the birth of SNAs associated with the mecha-ent dynamical states are very uneven in this phase diagram,

nisms mentioned above is discussed. In particular, the trar)(yhlch should be considered representative and schematic. In

sition of a two-frequency quasiperiodic attractor torus order to illustrate the fine transitions that take place in certain
doubled orbit— SNA (through type-lll intermittency —  '©9'0NS when the parameter varies, we also present the
chaos and the transition from chaes SNA (through type-| Iﬁyﬁpu?jo‘t’ __c,lpectrugj asa fténbcnlo n bifor fixed R in Fig. 2.
intermittency — torus, in addition to the standard transi- uier details are discussed below. .

tions, are shown to be operative in Bd). In Sec. Ill, a Periodic orbits of the forced system witR=0 become

number of Lyapunov measures such as the behavior of th uasiperiodic tori of the system with nonzeR As R is

largest Lyapunov exponent and its fluctuations, and the dis_urther increased, these tori typically bifurcate via period

tribution of finite-time Lyapunov exponents, are used todoubllng. Upon further increase of the parameters, there can

characterize the transitions from two-frequency quasiperiodbe further bifurcations or other transformations of the torus
icity to SNAs. Our results are summarized in Sec. IV attractors to SNAs. We first discuss the intermittency routes

to SNA that can be observed in this system.

Il. PARAMETRICALLY DRIVEN DUFFING OSCILLATOR i i
A. Type-lll intermittency

For our analysis, Eq1) can be rewritten as In some regions iMRk-h space the torus-doubling sequence

. is tamed due to subharmonic bifurcations which lead to the
X=Y, () creation of SNAS9]. We find that a growth of the subhar-
) monic amplitude begins together with a decrease in the size
y=—hy+[1+A(Rcos¢+ cosh) |x— x>, (3)  of the fundamental amplitude; such behavior is characteristic
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FIG. 1. Phase diagram for the parametrically driven Duffing oscillator system,(Bg%4), in the R-h parameter space. Here 2TS and
2TL correspond to torus doubled attractors of small and large quasiperiodic orbits, respectively. GF1, GF2, and GF3 correspond to the
regions where the process of gradual fractalization of a torus occurs. HH1 and HH2 represent the regions where SNA is created through the
Heagy-Hammel route. S1 and S3 denote regions where the SNA appears through type-1 and -1lI intermittencies, respectively. C1, C2, and
C3 correspond to chaotic attractors. Regions W1, W2, and W3 in Fagate expanded in Figs(ld), 1(c), and 1d), and the inset in Fig.
1(b) illustrates the intertwining of chaoti€C1) and quasiperiodic orbit§TL); the two levels curves correspond to the specific values of the
maximal Lyapunov exponentt =0(---) and A= —0.005(———).

of the so-called type-Ill intermittendyL7,24]. The transition transition is clearly illustrated in Fig. 3, where we note in the
from a period-doubled torus to intermittent SNA takes place(x, ¢» mod 44r) plane that the amplitude of one of the com-
in the region marked S3 in Fig. 1. From Figgalland Xc),  ponents increases while the amplitude of the other compo-
it can be observed that initially the large quasiperiodic orbitnent decreases when a transition from doubled torus to inter-
(TL) undergoes a torus doubling bifurcation to the torus at-mittent phenomenon takes place. The various bifurcations
tractor denoted 2TL. One would then expect the doublingand different routes to SNAs can be easily identified by dis-
sequence to continue as in the usual period-doubling caplaying ¢ modulo 4 instead of modulo 2 [19]. To exem-
cade, however, instead, here the doubling is interrupted bplify this transition further in the Fourier spectrum, it has
the formation of an intermittent SNA which then finally been identified that the amplitude of the subharmonic com-
settles into the chaotic attractor C2 fass increased. ponent W2/2) increases while the amplitude of fundamental
To understand the mechanism of the interruption of thecomponent YV2) decreasesluring this transition(see Fig.
doubling cascade consider a specific parameter valug of 3). This suggests that the birth of the intermittent SNA is
=0.47 while h is varied[see Figs. @) and 2b)]. For h  through a quasiperiodic analog of the subharmonic bifurca-
=0.08, the attractor is a two-frequency torus, but beyondion. At this transition, the amplitude variation loses its regu-
this, further period doubling of doubled torus does not takdarity (Fig. 3), and a burst appears in the regular phase. This
place. Instead, a new dynamical behavior, namely, intermitbehavior is repeated as time increases, as observed in the
tent phenomenon starts appearindiath.=0.088689. This usual intermittent scenarid 7,24]. Also, the duration of the
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0.15 We find e=0.009+ 0.0003 to give a best fit for the present
@ data.
0.1
B. Type-I intermittency
A 008 ct c2 cs On the right edge of the chaotic region C3, there is a
o r Tr transition from a chaotic attractor to a SNA and then to a
L GT:/\/"SS S1 quasiperiodic torus TS. This transition proceeds via type-I
HH intermittency[7] in the region marked S1 in Fig(d).
005 Consider the specific parameter valRe= 0.35 and vary
TL h; for h=0.1907, the attractor is chaofiEig. 5a)], and ash
01 005 01 015 02 025 is increased tt=0.190833, the chaotic attractor transforms
h to an SNA shown in Fig. ®). On increasing the value &f
further, an intermittent transition from the SNA to a torus, as
0.1 shown in Fig. %c), occurs ath,=0.190885@ . ... At this
i transition, the abrupt changes in the Lyapunov exponent as
‘ well as its variancgFigs. §a) and &b)] shows the charac-
0.06} teristic signature of the intermittent route to SNA as in the
type-lll case discussed above. Here the SNA, hopping be-
A 0.04 tween the two wells of the system, transforms to the small
0.02 quasiperiodic torus TS which oscillates in one of the wells as
in the case of periodically driven Duffing oscillatpt8].
0 \/\/\/—\/—_// Also, the plot between the number of laminar peridds)
o0l GFt TL GF2 o1 S8 and the period lengthr [shown in Fig. 6c)] indicates that
after an initial steep decay there is a slight hump and then a
0% 05 0.06 0.07 0.08 0.09 o1 fall off to a small value ofN(7). It also obeys the relation
h [24,26
0.15

(©
o1} 1

0.05¢ Co c3
A o Tr

€ c
N(7)~—| 7+tan arctal
2c

e

\f
u
Cc €
T—TZ\/: , (6)
u
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-0.05 TL €
TL \ﬁ
~0.1 TS u
s s s s where ¢ is the maximum value ofx(t), u=5.0 and e
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h

FIG. 2. The behavior of the Lyapunov exponent as a function of
hfor (a) R=0.47,(b) R=0.47, andc) R=0.4. Here the notation is

the same as in Fig. Tr stands for transienks

=0.0003~ + 0.00002.

C. Other routes to SNAs

In addition to the intermittency routes discussed above,
the Duffing system has the usual scenarios of torus collision
as well as fractalization. The details are as follows.

laminar phasegnamely, the quasiperiodic orpiis random.
At the intermittent transition the distinctive signature is an

abrupt change in the Lyapunov exponent as well as in its 1. Torus collision

variance as a function df, as shown in Figs. (@) and 4b).
This type of SNA occurs in the region 0.08368R
<0.088962. On further increase of the valuehofrom h

Torus collisions—the route identified by Heagy and Ham-
mel[3]—are denoted HH in Fig. 1. In this scenario, a period-
2" torus attractor gets wrinkled and upon collision with its

=0.088963, we find the emergence of a chaotic attractoparent unstable 2! torus, a 2 1-band SNA is formed.
(C2) shown in Fig. 8d), which though visibly similar to the Such a route has been identified in two different regions

SNA [see Fig. &)] has a positive Lyapunov exponent.
To confirm further that the SNA attractor, Fig(c} is

(HH1 and HH32 of the present system; the resulting SNAs
have somewhat different morphologies.

associated with standard type-Ill intermittent dynamics, we To exemplify the nature of this transition, let us fix the

plot the frequency of laminar periods of duratiennamely,
N(7) in Fig. 4(c). This obeys the scalinf24,25

—der 0.5
exp—4er) ] 5)

N(T)N[[l—exq—4e7')]

parameteR at 0.3, whilehis varied. Forh=0.19, one finds
the presence of a small quasiperiodic attractor which is de-
noted as TS in Fig. 1, but bly= 0.185, the attractor under-
goes a torus doubling bifurcation and the corresponding re-
gion is denoted as 2TS in Fig. 1. Whénis decreased
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FIG. 3. Projection of the two-frequency attractors of E@—(4) for R=0.47, with the Poincarplot in the x,¢) plane(i) ¢ modulo
2 and(ii) ¢ modulo 4 (iii ) power spectrum indicating the transition from chaotic to quasiperiodic attractors via SNA through the type-lIlI
intermittent mechanisnia) two frequency-doubled quasiperiodic orbit for= 0.075; (b) doubled torus foh=0.08; (c) intermittent SNA for
h=0.088689;(d) chaotic attractor foh=0.088963.

further, the two strands of the doubled attractor begin tahe large period-doubled tory8TL) becomes wrinkled and
wrinkle at h~0.184 [Fig. 7(a)], and lose continuity when then interacts with its unstable parent torus leading to the
h~0.181, resulting in a fractal attractor as shown in Fig.creation of a one band SNA.
7(b). The strange nonchaotighe Lyapunov exponent is
negative as seen in Fig(&] attractor is thus born at the
collision of a stable period-doubled torus 2TS and its un- The process of fractalizatidd], whereby a torus continu-
stable parent TS. Furthermore, this is a one-band SNA, asusly deforms and wrinkles to form a SNA, can be seen in
clearly depicted in Fig. 7, in which, prior to the collision, the regions marked GF1-3 in Fig. 1. The qualitiatiigeomet-
dynamics in the X, ¢ mod 27) plane corresponds to the two ric) structure of the attractors remains more or less the same
branchegFig. 7(a)(i)] while it corresponds to a simple curve during the process, unlike the intermittency routes or like the
in the (X, » mod 47) plane[Fig. 7(a)(ii)]. However after the torus collision route discussed in the previous subsections. In
collision the dynamics now goes over all of the attractor inthis route, a period-2torus becomes wrinkled, and then the
both cases of X,¢mod2x) [Fig. 7(b)(i)] and wrinkled attractor gradually loses its smoothness and forms a
(X,¢» mod4 ) planes[Fig. 7(b)(ii)]. 2"-band SNA.

The Lyapunov exponent also shows distinct change in its This transition can take place both as a function of in-
behavior for this type of transition. Figuree8 is a plot of  creasing or decreasirgin different regions of the parameter
the maximal Lyapunov exponent as a functiontofor a  space, as can be seen in the phase diagram. Consider the case
fixed value ofR=0.3. In the neighborhood df., A varies R=0.47, with varyingh. Forh=0.05, the attractor is chaotic
smoothly in the torus region, but in the SNA phase the variafthe Lyapunov exponenfsee Fig. 2 is positivg. As h is
tion is irregular and the crossover between these two behavacreased to 0.0558, one obtains the attractor shown in Fig.
iors is abrupt. It is also possible to identify the transition 9(a) which is morphologically similar to the chaotic attractor,
point from the examination of the variance An[which in-  but as it has a negative Lyapunov exponéfig. 2) it is in
creases significantly on the SNA, as shown in Fig)B fact a SNA. On increasing to 0.065, the attractor loses its

A similar behavior has also been observed in the regioriractal character, becoming(arinkled) large quasiperiodic
denoted HH2, for 0.3Z R<0.5 and 0.1xh<0.16, where orbit [see Fig. %)]. The Lyapunov exponentA) and its

2. Fractalization
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FIG. 4. Transition from doubled torus to SNA through a type-IlI
intermittent mechanism in the region S& The behavior of the
Lyapunov exponent X). (b) The variance ¢). (c) Number of
laminar periodsN( ) of durationr in the case of transition through

type-lll intermittency.

100

15C

2 bi) 2 cfi)

FIG. 5. Projection of the two-frequency attractors of E@—
(4) for R=0.35, with the Poincarglot in the (x,¢) plane (i) ¢
modulo 27 and (ii) ¢ modulo 47 indicating the transition from
quasiperiodic to chaotic attractors via SNA through type-I intermit-
tency mechanism(a) chaotic attractor foh=0.1907;(b) intermit-
tent SNA forh=0.190833;(c) torus forh=0.19088564.

its continuity and ultimately approaches a fractal attrcator
[see Figs. &) and 9d)], becoming considerably more
wrinkled with increasindh. Beyondh=0.0725, the attractor
becomes a doubled large quasiperiodic orbit with period
2TL. This transition is illustrated in Figs(@ and 7d) (also
see Fig. 2in which the 2TL orbit has two bifurcated strands
of length 27 for x>0 which are actually a single strand of
length 4. However, if one looks in the reverse direction of
h, one can note that as the 2TL orbit loses its smoothness and
develops a fractal nature, the dynamics in the
(X, modulo 2r) plane and X,¢ modulo4r) plane are
geometrically the same as in the case of fractalization in the
GF1 region described above. The behavior of the Lyapunov
exponent and its variance lack specific signatures at the torus
to SNA transitions, as demonstrated in Fig(l)0

Yet another transition to SNA occurs through gradual
fractalization in the region GF3, where a transition from
small quasiperiodic attractdiTS) to chaos occurs through
torus-doubling bifurcatiorfFigs. 1@ and 1d)]. Here the
period-doubled orbit 2TS is fractalized, leading to the forma-
tion of two-band SNAs wherh is decreased from higher
values[see Fig. 1d)], and the phenomenon is similar to what
was discussed above.

D. Transition between different SNAs

Previous subsections have enumerated the several ways
through which SNAs are created from torus attractors. These
processes include transitions such as nT<»n band SNA
—chaos,...2"T—2""! band SNA « chaos, etc. One
might also observe from thie-h phase diagraniFig. 1) that
there are regions where transitions from one type of SNA to
another type can occur. Particularly, one may note that tran-
sitions occur between GF2 and S3, S3 and HH2, S1 and
HH1, and HH1 and GF3. On closer scrutiny, we find that
there exists a narrow range of chaotic motion between the
GF2 and S3 as well as the S3 and HH2 regions, while

variance ¢r) do not show any specific signature as in the2TS/TS attractors intervene in between S1 and HH1. That is,
case of the intermittent SNA or HH SNPsee Fig. 1()].

There are a variety of transitions involving fractalization
in the phase diagram. On increasihgto 0.072, alongR

the transition between S3 and HH2 regions corresponds to
...n band SNA«~n band chaos-n band SNAs. . ., and
the transition between the regions GF2 and S3 corresponds

=0.47 in the GF2 region, the wrinkled attractor again lose€o ...n band SNAs<—n band chaos—n/2 band chaos
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FIG. 6. Transition from torus to SNA through type-I intermittent
mechanism in region S3a) The behavior of the Lyapunov expo-
nent (A). (b) The variance §). (¢) Number of laminar periods
N(7) of duration7 in the case of transition through type-I intermit-
tency.

—n/2 band SNAs. However, in the transition region be-

tween GF3 and HH]see Fig. 1d)], there is band merging,
namely, a transition fromn-band SNA ton/2-band SNA.

This transition[27] is analogous to the phenomenon of re-

a(i) afil)

i)

e

FIG. 7. Projection of the two-frequency attractors of E@@-
(4) for R=0.3, with the Poincarglot in the (x,¢) plane (i) ¢
modulo 27 and (ii) ¢ modulo 47 indicating the transition from
chaotic to quasiperiodic attractors via SNA through Heagy-Hammel
(HH1) mechanism:(a) torus-doubled attractor foh=0.184; (b)
strange nonchaotic attractor for=0.181.

chaotic systems, though here the dynamics remains noncha-
otic and strange during the transition. Such phenomena have
been identified in the driven Henon and circle maps and also
in the logistic magd8,13,27. In the present case we find that
as the parameter passes through critical values, the torus-
doubled attractor does not collide in the GF3 region when
undergoing fractalization, whereas it does collide in the HH1
region, thereby leading to a transition from one type of SNA
to another(See Fig. 11

[ll. PROBABILITY DISTRIBUTIONS OF FINITE-TIME
LYAPUNOV EXPONENTS

Owing to the underlying fractal structure, trajectories on a
SNA can be locally unstable: finite-time Lyapunov expo-
nents can be positive although the glolat asymptoti¢
Lyapunov exponent is nonpositive. As described in the Ap-
pendix, we obtain the distribution of finite-time Lyapunov
exponents,P(t,\) and the variance, through E¢A3) or
(A4). For most “typical” chaotic motion, a general argu-
ment suggests that the densRyt,\) [Eq. (A1l)] should be
normally distributed28,29. On the other hand, for intermit-
tent dynamics, for instance, the system switches between pe-
riodic and chaotic states and shows long-range temporal cor-
relations. The probablity distribution of these finite-time
Lyapunov exponentsLE’s) is asymmetric since it arises
from a superposition of two independent densities, each of
which is separatelya Gaussian distribution, centered on a
distinct value of the average Lyapunov expongsd]. On
intermittent SNAs, one of the components is a torus with a
negative or zero Lyapunov exponent, while the other com-
ponent is chaotic, with the average Lyapunov exponent being
positive. Finite stretches of intermittent dynamics involve
both kinds of motion, and therefore the density of finite-time
LE’s for intermittency usually results in a stretched exponen-
tial tail [30] and in a markedly asymmetric distribution for

verse bifurcation or band-merging bifurcations occurring inP(t,\).
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FIG. 9. Projection of the two-frequency attractors of E@-
h h (4) for R=0.47, with the Poincarglot in the (x,¢) plane (i) ¢
c modulo 27 and (ii) ¢ modulo 47 indicating the transition from

chaotic to quasiperiodic attractors via SNA through fractalization

FIG. 8. Transition from doubled torus to SNA through Heagy- (GF1 and GFR (a) strange nonchaotic attractor fdr=0.0558
Hammel mechanism in the region HH{a) the behavior of the  (GF1); (b) wrinkled attractor forh=0.065; (c) strange nonchaotic
Lyapunov exponentX); (b) the variance ). attractor for h=0.072 (GF2); (d) torus-doubled attractor foh

=0.0729.

Although in the infinite time limit all distributions will go
to a5f_unct|0n[see Eq(A2)], for finite t|mesP_(t,)\) can be F+(t)=J P(tA)d. R
very different for SNAs created through different mecha- 0
nisms[8,23. In particular, when the dynamics is intermittent
[30], the exponential tails in the distribution persist for long Clearly, lim _...F, (t)—0. Empirically, it has been found
times. Shown in Fig. 1) are distributionsP(2048)\) for  [23,3(0 that on an intermittent SNA, this quantity shows the
the two intermittent transitions discussed here. Both the dislarget behavior
tributions have an asymmetric tail which extends well into
the locally chaotic(i.e., Lyapunov exponeni>0) region, Fo(t)~t % (8
even for such a long time interval. This correlates with en-
hanced fluctuations in the Lyapunov exponent on intermitwe find numerically that exponents in both the S1 and S3
tent SNAs. On SNAs formed by the fractalization or torusregions aref~1 [31]. For fractalized or Heagy-Hammel
collision mechanisms, in contrast, similar densities are essei®NAs, the approach is exponentially fast:
tially Gaussiar{23]; these are shown for comparison in Fig.
12(b). F o (t)~exp—yt). (9)

In order to quantify the slow decay of the positive tail in
the distribution for intermittent SNAs, we define the fraction  Note that in the long-time limit, all distributions will col-
of positive local Lyapunov exponenf80] as lapse to the Gaussian, so that, for very long tintes, F .
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FIG. 10. Transition from torus to SNA through a gradual frac-
talization mechanism indicating) the behavior of the Lyapunov
exponent {\) and (ii) the variance ¢) (a) in the region GF1 and
(b) in the region GF2.

will decay exponentially on all SNAs. The exponetsand
vy depend strongly on the system parameters.
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On SNAs, as a consequence of the fractal geometry, 7\,

stable and unstable regions are interwoven in a complicated
manner. Thus, although trajectories with different initial con-
dklltlons will eventlu.aIIchomude with each OtEéBZ}j Smce. tencies (solid ling), with t=2048, and(b) torus collision (the
there are no positive Lyapunov exponents, they do so in ap|eagy-HammeI roude(dotted ling and fractalization(solid line).

intermittent fashion, unlike the case of quasiperiodic attrac—ye parameter values are those of Figs),3(b), 7(b), and 11a)
tors, converging in locally stable regions and diverging inrespectively.

locally unstable regions.
In this paper we have described the transition from qua-
siperiodic attractors to chaos through different types o

FIG. 12. Distribution of finite-time Lyapunov exponents on
SNAs created througta) type-Ill (dashed lingand type-I intermit-

NAs in a protypical example, namely, the two-frequency
parametrically driven Duffing oscillator. We have demar-
cated the different regions in parameter space where these
different dynamical states can be located. There are several
mechanisms through which SNAs are formed here, two of
which appear to be quasiperiodic analogies of intermittency

1.5 15

N ]

#

N Y transitions in unforced systeri%7]. In addition to these, we
also find evidence of the torus collision route to the SNA as
. . well as fractalization.
0 2 4 6 0 2 4 6 To distinguish among the different mechanisms through

which SNAs are created, we examined the manner in which
the maximal Lyapunov exponent and its variance changes as
a function of the parameters. In addition, we have also ex-
amined the distribution of local Lyapunov exponents, and
found that on different SNAs they have different character-
istics. Our analysis confirms that in intermittent SNAs, the
signature of the transition is a discontinuous change in both
the maximal Lyapunov exponent and in the variance. Fur-
0 2 4 6 0 2 4 8 ther, the two different intermittency routes are distinguished
by their different scaling behaviors. The chaotic component

FIG. 11. Transition from gradual fractalizatif&F3 region 0N both types of intermittent SNAs is long lived, giving, as a
type of SNA to Heagy-HammeHH1 region type of SNA forh ~ consequence, a slowly decaying positive taiPi(N,\) and
=0.1675: () SNA (GF3 region for R=0.1955; (b) SNA (GF3  a resulting power-law decay fdr, (N).
region for R=0.197; (c) SNA (HH1 region for R=0.1974; (d) Since the driven Duffing system can be experimentally
SNA (HH1 region for R=0.203. realized in a driven magnetoelastic ribbon, the present work




3650 VENKATESAN, LAKSHMANAN, PRASAD, AND RAMASWAMY PRE 61

can help in identifying different conditions under which tial conditions, we consider the probability distributions
SNAs can be found in a typical system. The study ofP(t,\), defined as

SNAs—from both theoretical and experimental points of .

view—is in its initial stages, and the present study may aid inP(t,A)dA=[Probability that A;(t) takes a value between
the_realization of different bifurcation routes to SNA in ex- X and A +d\]. (A1)
perimental systems.

This distribution is a stationary quantity, and is particularly
ACKNOWLEDGMENTS useful in describing the structure and dynamics of nonuni-
form attractors[28,29. In the asymptotic limitt—oo, this

This work forms part of the Department of Science anddistribution will collapse to as function:

Technology, Government of India research projects for M.L.
and R.R.(SP-S2-E07-96 A.V. wishes to acknowledge the P(t,\)— 8(A—N\). (A2)
Council of Scientific and Industrial Research, Government of
India, for financial support. The deviations from this limit for finite times, and the as-
ymptotics, namely, the approach to the limit, can be very
APPENDIX: FINITE-TIME LYAPUNOV EXPONENTS revealing of the underlying dynami¢80].

. From this distribution, one can calculate the variance of
The largest Lyapunov exponert which measures the the [ yapunov exponem as

rate of separation of nearby trajectories can be computed via

a standard algorithnj21]. This is an asymptotic quantity, * 5

and is a long(in principle infinite time average of the local o= f_m(A_)‘) P(t,\)dA. (A3)

rate of expansion in phase space. The finite-time or local

Lyapunov exponerk;(t) is defined in an analogous manner Equivalently, one can obtain the variance as

[30,33, except that it is computed over a finite-time interval,

t. The subscript indexes the segmefthat is, in effect, the

initial conditions in which this exponent is evaluated. A =M 2’1 (A=Ni(D)% (A4)

given trajectory is thus divided into segments of length

and, in each of these, the local Lyapunov expone(t) is  that is, from a set oM finite-time Lyapunov exponents. In

computed. our numerical calculations in Sec. Il, for instance, we take
As the finite-time Lyapunov exponents depend on the init+=50 andM =10°.
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