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Intermittency transitions to strange nonchaotic attractors in a quasiperiodically
driven Duffing oscillator
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Different mechanisms for the creation of strange nonchaotic attractors~SNAs! are studied in a two-
frequency parametrically driven Duffing oscillator. We focus on intermittency transitions in particular, and
show that SNAs in this system are created through quasiperiodic saddle-node bifurcations~type-I intermit-
tency! as well as through a quasiperiodic subharmonic bifurcation~type-III intermittency!. The intermittent
attractors are characterized via a number of Lyapunov measures including the behavior of the largest nontrivial
Lyapunov exponent and its variance, as well as through distributions of finite-time Lyapunov exponents. These
attractors are ubiquitous in quasiperiodically driven systems; the regions of occurrence of various SNAs are
identified in a phase diagram of the Duffing system.

PACS number~s!: 05.45.Ac, 05.45.Df, 05.45.Pq
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I. INTRODUCTION

Interest in the dynamics of quasiperiodically driven sy
tems has grown in recent years largely due to the existe
of interesting behavior such as strange nonchaotic dynam
The initial work of Grebogiet al. @1# showed that with qua-
siperiodic forcing, nonlinear systems could have stran
nonchaotic attractors~SNAs!, namely, attractors with a frac
tal geometry, but with a nonpositive Lyapunov expone
Subsequent studies have dealt with a number of impor
issues pertaining to theoretical as well as experimental
pects@2–16# of SNAs.

While the existence of SNAs is firmly established, a qu
tion that remains interesting is the mechanism or bifurcati
through which these are created from regular or chaotic
tractors. To date a number of different scenarios have b
identified: these include torus doubling to chaos via SN
@3#, fractalization of the torus@4#, the re-emergence of a toru
doubling sequence and the birth of SNAs@5#, the occurrence
of SNAs via blowout bifurcation@6#, the appearance o
SNAs through type-I intermittent phenomenon@7# or type-III
intermittency@9#, and so on@10–16#.

Scenarios for the formation of SNAs often have parall
in scenarios for the formation of chaotic attractors. The m
common route to SNAs is the gradual ‘‘fractalization’’ of
torus @4# where an amplitude or phase instability causes
collapse of the torus, which becomes progressively more
more ‘‘wrinkled’’ as a parameter in the system chang
eventually becoming a fractal attractor. This is also the le
well understood mechanism for the formation of SNAs sin
there is no apparent bifurcation, unlike the crisislike tor
collision mechanisms identified by Heagy and Hammel@3#
and Feudel, Kurths, and Pikovsky@11#. In the former in-
stance, a period-doubled torus collides with its unstable p
ent, while in the latter, a stable and unstable torus collide
a dense set of points, leading to SNAs. The quasiperio
analog of a saddle-node bifurcation gives rise to SN
through the intermittent route@7#, with the dynamics exhib-
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iting a scaling behavior characteristic of type-I intermitten
@17#. The quasiperiodic subharmonic bifurcation, on t
other hand, gives rise to type-III intermittent SNAs@9#, when
a torus-doubled attractor is interrupted by a subharmonic
furcation, resulting in the inhibition of torus-doubling se
quence.

Our prime concern in the present work is to understa
how a typical nonlinear system, namely, the Duffing oscil
tor, responds to a quasiperiodic forcing and exhibits differ
dynamical transitions involving SNAs. In particular, inte
mittencies through which SNAs are formed have been inv
tigated, in addition to standard mechanisms like fractali
tion and torus collision. Although some of these mechanis
have already been identified in certain maps and continu
systems@3,4,7,8#, in order to generalize such dynamical tra
sitions in real physical systems we undertake our invest
tion on a damped, two frequency parametrically driv
double-well Duffing oscillator@18#

ẍ1hẋ2@11A~R cost1cosVt !#x1x350, ~1!

which is a well-suited model@19# for buckled beam oscilla-
tions. The simplest experimental realization of the abo
equation, the magnetoelastic ribbon, has been extensi
studied @18,20#, and is the first system where SNAs we
observed@14# with V chosen to be an irrational number. Th
existence of several routes to SNAs in Eq.~1! suggests that
there may be experimental realizations of different types
SNAs which are deserving of further study; our analysis h
is thus of some experimental relevance.

The parametrically driven Duffing oscillator@Eq. ~1!#, is a
rich dynamical system, possessing a variety of regu
strange nonchaotic, and chaotic attractors. We concentrat
the intermittent transitions to SNAs and the mechanism
which they arise in a range inR-h parameter space.~In ad-
dition to the intermittency routes mentioned above, Y
çinkaya and Lai@6# showed that on-off intermittency ca
also be associated with SNAs created through a blowout
3641 © 2000 The American Physical Society
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furcation, when a torus loses its transverse stability@6#. This
bifurcation does not occur in the present system in the ra
of parameters studied.!

SNAs represent a dynamics which is intermediate
tween regular and chaotic motion, and therefore they nee
be distinguished from chaotic attractors and quasiperio
~torus! attractors. There are several quantitative criteria t
can be used to determine the strange nonchaotic na
@1–13#. The most direct characterization of SNAs is throu
the largest Lyapunov exponent~which should be nonposi
tive! and the existence of a nontrivial fractal structure. W
employ these criteria in the present work in order to iden
strange nonchaotic behavior: Lyapunov exponents are ca
lated in the usual manner@21#, and the correlation dimensio
~calculated through the standard Grassberger-Procaccia
rithm @22#! is used to determine whether or not the attrac
is fractal. In addition to the fact that Lyapunov exponents
negative on SNAs, the variance of the Lyapunov expone
on SNAs is also large.~Here, by variance, we mean th
fluctuations in the measured value of finite-time Lyapun
exponents, as calculated from several realizations of the
namics; see the Appendix!. This quantity also shows charac
teristic changes across transitions to SNAs~particularly
when there are crises! @8#.

A host of other properties have been used to characte
SNAs, such as the scaling of spectral features or the ‘‘ph
sensitivity’’ @11#. SNAs are characterized by specific sign
tures in their frequency spectrum, wherein they admit pow
law relationN(s);s2a, 1,a,2, where the spectral distri
bution functionN(s) is defined as the number of peaks
the Fourier amplitude spectrum larger than some values.
Another measure@11# is based on the presence of a comp
cated path between the real and imaginary Fourier am
tudes which reflects the fractal geometry of SNAs.

Finer distinctions among SNAs formed via differe
mechanisms can be made by use of various measures,
the nature of the variation of the Lyapunov exponents and
variance near the transition values of the control param
@8#, the nature of the bursting and scaling laws in the cas
intermittent types SNAs@7#, the statistical properties o
finite-time Lyapunov exponents@23#, and so on.

In Sec. II, the birth of SNAs associated with the mech
nisms mentioned above is discussed. In particular, the t
sition of a two-frequency quasiperiodic attractor→ torus
doubled orbit→ SNA ~through type-III intermittency! →
chaos and the transition from chaos→ SNA ~through type-I
intermittency! → torus, in addition to the standard trans
tions, are shown to be operative in Eq.~1!. In Sec. III, a
number of Lyapunov measures such as the behavior of
largest Lyapunov exponent and its fluctuations, and the
tribution of finite-time Lyapunov exponents, are used
characterize the transitions from two-frequency quasiper
icity to SNAs. Our results are summarized in Sec. IV.

II. PARAMETRICALLY DRIVEN DUFFING OSCILLATOR

For our analysis, Eq.~1! can be rewritten as

ẋ5y, ~2!

ẏ52hy1@11A~R cosf1cosu!#x2x3, ~3!
e

-
to
ic
t
re

u-

go-
r
e
ts

v
y-

ze
se
-
r

li-

.g.,
ts
er
of

-
n-

he
s-

-

ḟ51, u̇5V. ~4!

Note that the three equilibrium points of the system forA
50 correspond to2x1x350, so that there are two stabl
fixed pointsx6

s 561 and an unstable fixed point atxu50.
Figure 1~a! is the overall phase diagram for the syste

with the parametersA50.3 andV5(A511)/2, fixed, while
R and h are varied. The dynamical equations are integra
numerically using a fourth-order Runge-Kutta algorith
with an adaptive step size. The dynamical states and tra
tions among them are characterized through the Lyapu
exponents and their variance, as well as a number of dif
ent measures. The relevant details of the calculation
Lyapunov exponents and their variance are given in the
pendix.

There are a number of different regions where period
chaotic, and strange nonchaotic attractors can be found: F
1~b!, 1~c!, and 1~d! are blowups of regions W1, W2, and W
respectively, in Fig. 1~a!. The various features indicated i
the phase diagram are summarized and the dynamical
sitions are elucidated in the following.

The general features of the phase diagram fall into a
miliar pattern. Compared to the Duffing oscillator driven b
a single frequency~the case ofR50), there are new chaotic
regions C1, C2, and C3, and, bordering the chaotic regio
one has regions where the attractors are strange and non
otic. The different regions where quasiperiodic attractors
be found are also separated here by regions of chaotic at
tors and SNAs. In Fig. 1, the region marked TL contai
large quasiperiodic attractors that oscillate about the equ
rium pointsxu andx6

s , while TS denotes a small quasiper
odic orbit which oscillates around one of the stable fix
points alone, depending on the initial conditions. The st
denoted D contains interesting dynamical states, both cha
attractors and SNAs, between which there are a numbe
transitions.

SNAs are found in a large number of regions, some
which are marked GF1, GF2, GF3, HH1, HH2, S1, and
~based on the scenarios responsible for their creation!. It
should also be pointed out that boundaries separating di
ent dynamical states are very uneven in this phase diag
which should be considered representative and schemati
order to illustrate the fine transitions that take place in cert
regions when the parameter varies, we also present
Lyapunov spectrum as a function ofh for fixed R in Fig. 2.
Fuller details are discussed below.

Periodic orbits of the forced system withR50 become
quasiperiodic tori of the system with nonzeroR. As R is
further increased, these tori typically bifurcate via peri
doubling. Upon further increase of the parameters, there
be further bifurcations or other transformations of the to
attractors to SNAs. We first discuss the intermittency rou
to SNA that can be observed in this system.

A. Type-III intermittency

In some regions inR-h space the torus-doubling sequen
is tamed due to subharmonic bifurcations which lead to
creation of SNAs@9#. We find that a growth of the subhar
monic amplitude begins together with a decrease in the
of the fundamental amplitude; such behavior is characteri
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FIG. 1. Phase diagram for the parametrically driven Duffing oscillator system, Eqs.~2!–~4!, in theR-h parameter space. Here 2TS an
2TL correspond to torus doubled attractors of small and large quasiperiodic orbits, respectively. GF1, GF2, and GF3 correspo
regions where the process of gradual fractalization of a torus occurs. HH1 and HH2 represent the regions where SNA is created th
Heagy-Hammel route. S1 and S3 denote regions where the SNA appears through type-I and -III intermittencies, respectively. C1
C3 correspond to chaotic attractors. Regions W1, W2, and W3 in Fig. 1~a! are expanded in Figs. 1~b!, 1~c!, and 1~d!, and the inset in Fig.
1~b! illustrates the intertwining of chaotic~C1! and quasiperiodic orbits~TL!; the two levels curves correspond to the specific values of
maximal Lyapunov exponent:L50(•••) andL520.005(222).
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of the so-called type-III intermittency@17,24#. The transition
from a period-doubled torus to intermittent SNA takes pla
in the region marked S3 in Fig. 1. From Figs. 1~a! and 1~c!,
it can be observed that initially the large quasiperiodic or
~TL! undergoes a torus doubling bifurcation to the torus
tractor denoted 2TL. One would then expect the doubl
sequence to continue as in the usual period-doubling
cade, however, instead, here the doubling is interrupted
the formation of an intermittent SNA which then final
settles into the chaotic attractor C2 ash is increased.

To understand the mechanism of the interruption of
doubling cascade consider a specific parameter value oR
50.47 while h is varied @see Figs. 2~a! and 2~b!#. For h
50.08, the attractor is a two-frequency torus, but beyo
this, further period doubling of doubled torus does not ta
place. Instead, a new dynamical behavior, namely, interm
tent phenomenon starts appearing ath5hc50.088689. This
e

it
t-
g
s-
y

e

d
e
t-

transition is clearly illustrated in Fig. 3, where we note in t
(x,f mod 4p) plane that the amplitude of one of the com
ponents increases while the amplitude of the other com
nent decreases when a transition from doubled torus to in
mittent phenomenon takes place. The various bifurcati
and different routes to SNAs can be easily identified by d
playingf modulo 4p instead of modulo 2p @19#. To exem-
plify this transition further in the Fourier spectrum, it ha
been identified that the amplitude of the subharmonic co
ponent (W2/2) increases while the amplitude of fundamen
component (W2) decreasesduring this transition~see Fig.
3!. This suggests that the birth of the intermittent SNA
through a quasiperiodic analog of the subharmonic bifur
tion. At this transition, the amplitude variation loses its reg
larity ~Fig. 3!, and a burst appears in the regular phase. T
behavior is repeated as time increases, as observed in
usual intermittent scenario@17,24#. Also, the duration of the
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laminar phases~namely, the quasiperiodic orbit! is random.
At the intermittent transition the distinctive signature is
abrupt change in the Lyapunov exponent as well as in
variance as a function ofh, as shown in Figs. 4~a! and 4~b!.
This type of SNA occurs in the region 0.088689,h
,0.088962. On further increase of the value ofh from h
50.088963, we find the emergence of a chaotic attra
~C2! shown in Fig. 3~d!, which though visibly similar to the
SNA @see Fig. 3~c!# has a positive Lyapunov exponent.

To confirm further that the SNA attractor, Fig. 3~c!, is
associated with standard type-III intermittent dynamics,
plot the frequency of laminar periods of durationt, namely,
N(t) in Fig. 4~c!. This obeys the scaling@24,25#

N~t!;H exp~24et!

@12exp~24et!#J
0.5

. ~5!

FIG. 2. The behavior of the Lyapunov exponent as a function
h for ~a! R50.47, ~b! R50.47, and~c! R50.4. Here the notation is
the same as in Fig. 1~Tr stands for transients!.
ts

r

e

We find e50.00960.0003 to give a best fit for the prese
data.

B. Type-I intermittency

On the right edge of the chaotic region C3, there is
transition from a chaotic attractor to a SNA and then to
quasiperiodic torus TS. This transition proceeds via typ
intermittency@7# in the region marked S1 in Fig. 1~a!.

Consider the specific parameter valueR50.35 and vary
h; for h50.1907, the attractor is chaotic@Fig. 5~a!#, and ash
is increased toh50.190833, the chaotic attractor transform
to an SNA shown in Fig. 5~b!. On increasing the value ofh
further, an intermittent transition from the SNA to a torus,
shown in Fig. 5~c!, occurs athc50.19088564 . . . . At this
transition, the abrupt changes in the Lyapunov exponen
well as its variance@Figs. 6~a! and 6~b!# shows the charac
teristic signature of the intermittent route to SNA as in t
type-III case discussed above. Here the SNA, hopping
tween the two wells of the system, transforms to the sm
quasiperiodic torus TS which oscillates in one of the wells
in the case of periodically driven Duffing oscillator@18#.
Also, the plot between the number of laminar periodsN(t)
and the period lengtht @shown in Fig. 6~c!# indicates that
after an initial steep decay there is a slight hump and the
fall off to a small value ofN(t). It also obeys the relation
@24,26#

N~t!;
e

2c H t1tanF arctanS c

Ae

u
D 2tAeuG

2arctanS c

Ae

u
D t2t2Ae

uJ , ~6!

where c is the maximum value ofx(t), u55.0 and e
50.0003610.00002.

C. Other routes to SNAs

In addition to the intermittency routes discussed abo
the Duffing system has the usual scenarios of torus collis
as well as fractalization. The details are as follows.

1. Torus collision

Torus collisions—the route identified by Heagy and Ha
mel @3#—are denoted HH in Fig. 1. In this scenario, a perio
2n torus attractor gets wrinkled and upon collision with
parent unstable 2n21 torus, a 2n21-band SNA is formed.
Such a route has been identified in two different regio
~HH1 and HH2! of the present system; the resulting SNA
have somewhat different morphologies.

To exemplify the nature of this transition, let us fix th
parameterR at 0.3, whilehis varied. Forh50.19, one finds
the presence of a small quasiperiodic attractor which is
noted as TS in Fig. 1, but byh5 0.185, the attractor under
goes a torus doubling bifurcation and the corresponding
gion is denoted as 2TS in Fig. 1. Whenh is decreased

f
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FIG. 3. Projection of the two-frequency attractors of Eqs.~2!–~4! for R50.47, with the Poincare´ plot in the (x,f) plane~i! f modulo
2p and~ii ! f modulo 4p ~iii ! power spectrum indicating the transition from chaotic to quasiperiodic attractors via SNA through the ty
intermittent mechanism:~a! two frequency-doubled quasiperiodic orbit forh50.075;~b! doubled torus forh50.08; ~c! intermittent SNA for
h50.088689;~d! chaotic attractor forh50.088963.
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further, the two strands of the doubled attractor begin
wrinkle at h'0.184 @Fig. 7~a!#, and lose continuity when
h'0.181, resulting in a fractal attractor as shown in F
7~b!. The strange nonchaotic@the Lyapunov exponent is
negative as seen in Fig. 8~a!# attractor is thus born at th
collision of a stable period-doubled torus 2TS and its u
stable parent TS. Furthermore, this is a one-band SNA
clearly depicted in Fig. 7, in which, prior to the collision, th
dynamics in the (x,f mod 2p) plane corresponds to the tw
branches@Fig. 7~a!~i!# while it corresponds to a simple curv
in the (x,f mod 4p) plane@Fig. 7~a!~ii !#. However after the
collision the dynamics now goes over all of the attractor
both cases of (x,f mod 2p) @Fig. 7~b!~i!# and
(x,f mod4p) planes@Fig. 7~b!~ii !#.

The Lyapunov exponent also shows distinct change in
behavior for this type of transition. Figure 8~a! is a plot of
the maximal Lyapunov exponent as a function ofh for a
fixed value ofR50.3. In the neighborhood ofhc , L varies
smoothly in the torus region, but in the SNA phase the va
tion is irregular and the crossover between these two be
iors is abrupt. It is also possible to identify the transiti
point from the examination of the variance inL @which in-
creases significantly on the SNA, as shown in Fig. 8~b!#.

A similar behavior has also been observed in the reg
denoted HH2, for 0.37,R,0.5 and 0.11,h,0.16, where
o

.

-
as

ts

-
v-

n

the large period-doubled torus~2TL! becomes wrinkled and
then interacts with its unstable parent torus leading to
creation of a one band SNA.

2. Fractalization

The process of fractalization@4#, whereby a torus continu
ously deforms and wrinkles to form a SNA, can be seen
regions marked GF1–3 in Fig. 1. The qualitiative~geomet-
ric! structure of the attractors remains more or less the s
during the process, unlike the intermittency routes or like
torus collision route discussed in the previous subsections
this route, a period-2n torus becomes wrinkled, and then th
wrinkled attractor gradually loses its smoothness and form
2n-band SNA.

This transition can take place both as a function of
creasing or decreasingh in different regions of the paramete
space, as can be seen in the phase diagram. Consider the
R50.47, with varyingh. Forh50.05, the attractor is chaoti
@the Lyapunov exponent~see Fig. 2! is positive#. As h is
increased to 0.0558, one obtains the attractor shown in
9~a! which is morphologically similar to the chaotic attracto
but as it has a negative Lyapunov exponent~Fig. 2! it is in
fact a SNA. On increasingh to 0.065, the attractor loses it
fractal character, becoming a~wrinkled! large quasiperiodic
orbit @see Fig. 9~b!#. The Lyapunov exponent (L) and its
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variance (s) do not show any specific signature as in t
case of the intermittent SNA or HH SNA@see Fig. 10~a!#.

There are a variety of transitions involving fractalizatio
in the phase diagram. On increasingh to 0.072, alongR
50.47 in the GF2 region, the wrinkled attractor again los

FIG. 4. Transition from doubled torus to SNA through a type-
intermittent mechanism in the region S3:~a! The behavior of the
Lyapunov exponent (L). ~b! The variance (s). ~c! Number of
laminar periodsN(t) of durationt in the case of transition throug
type-III intermittency.
s

its continuity and ultimately approaches a fractal attrca
@see Figs. 9~c! and 9~d!#, becoming considerably mor
wrinkled with increasingh. Beyondh50.0725, the attractor
becomes a doubled large quasiperiodic orbit with per
2TL. This transition is illustrated in Figs. 7~c! and 7~d! ~also
see Fig. 2! in which the 2TL orbit has two bifurcated strand
of length 2p for x.0 which are actually a single strand o
length 4p. However, if one looks in the reverse direction
h, one can note that as the 2TL orbit loses its smoothness
develops a fractal nature, the dynamics in t
(x,f modulo 2p) plane and (x,f modulo 4p) plane are
geometrically the same as in the case of fractalization in
GF1 region described above. The behavior of the Lyapu
exponent and its variance lack specific signatures at the t
to SNA transitions, as demonstrated in Fig. 10~b!.

Yet another transition to SNA occurs through gradu
fractalization in the region GF3, where a transition fro
small quasiperiodic attractor~TS! to chaos occurs through
torus-doubling bifurcation@Figs. 1~a! and 1~d!#. Here the
period-doubled orbit 2TS is fractalized, leading to the form
tion of two-band SNAs whenh is decreased from highe
values@see Fig. 1~d!#, and the phenomenon is similar to wh
was discussed above.

D. Transition between different SNAs

Previous subsections have enumerated the several w
through which SNAs are created from torus attractors. Th
processes include transitions such as . . .nT↔n band SNA
↔chaos,. . . 2nT↔2n21 band SNA ↔ chaos, etc. One
might also observe from theR-h phase diagram~Fig. 1! that
there are regions where transitions from one type of SNA
another type can occur. Particularly, one may note that tr
sitions occur between GF2 and S3, S3 and HH2, S1
HH1, and HH1 and GF3. On closer scrutiny, we find th
there exists a narrow range of chaotic motion between
GF2 and S3 as well as the S3 and HH2 regions, wh
2TS/TS attractors intervene in between S1 and HH1. Tha
the transition between S3 and HH2 regions correspond
. . . n band SNA↔n band chaos↔n band SNAs. . . , and
the transition between the regions GF2 and S3 correspo
to . . .n band SNAs↔n band chaos↔n/2 band chaos

FIG. 5. Projection of the two-frequency attractors of Eqs.~2!–
~4! for R50.35, with the Poincare´ plot in the (x,f) plane ~i! f
modulo 2p and ~ii ! f modulo 4p indicating the transition from
quasiperiodic to chaotic attractors via SNA through type-I interm
tency mechanism:~a! chaotic attractor forh50.1907;~b! intermit-
tent SNA forh50.190833;~c! torus forh50.19088564.
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↔n/2 band SNAs. However, in the transition region b
tween GF3 and HH1@see Fig. 1~d!#, there is band merging
namely, a transition fromn-band SNA ton/2-band SNA.
This transition@27# is analogous to the phenomenon of r
verse bifurcation or band-merging bifurcations occurring

FIG. 6. Transition from torus to SNA through type-I intermitte
mechanism in region S3:~a! The behavior of the Lyapunov expo
nent (L). ~b! The variance (s). ~c! Number of laminar periods
N(t) of durationt in the case of transition through type-I intermi
tency.
-

chaotic systems, though here the dynamics remains non
otic and strange during the transition. Such phenomena h
been identified in the driven Henon and circle maps and a
in the logistic map@8,13,27#. In the present case we find tha
as the parameter passes through critical values, the to
doubled attractor does not collide in the GF3 region wh
undergoing fractalization, whereas it does collide in the H
region, thereby leading to a transition from one type of SN
to another~See Fig. 11!.

III. PROBABILITY DISTRIBUTIONS OF FINITE-TIME
LYAPUNOV EXPONENTS

Owing to the underlying fractal structure, trajectories on
SNA can be locally unstable: finite-time Lyapunov exp
nents can be positive although the global~or asymptotic!
Lyapunov exponent is nonpositive. As described in the A
pendix, we obtain the distribution of finite-time Lyapuno
exponents,P(t,l) and the variance, through Eq.~A3! or
~A4!. For most ‘‘typical’’ chaotic motion, a general argu
ment suggests that the densityP(t,l) @Eq. ~A1!# should be
normally distributed@28,29#. On the other hand, for intermit
tent dynamics, for instance, the system switches between
riodic and chaotic states and shows long-range temporal
relations. The probablity distribution of these finite-tim
Lyapunov exponents~LE’s! is asymmetric since it arise
from a superposition of two independent densities, each
which is separatelya Gaussian distribution, centered on
distinct value of the average Lyapunov exponent@30#. On
intermittent SNAs, one of the components is a torus with
negative or zero Lyapunov exponent, while the other co
ponent is chaotic, with the average Lyapunov exponent be
positive. Finite stretches of intermittent dynamics invol
both kinds of motion, and therefore the density of finite-tim
LE’s for intermittency usually results in a stretched expone
tial tail @30# and in a markedly asymmetric distribution fo
P(t,l).

FIG. 7. Projection of the two-frequency attractors of Eqs.~2!–
~4! for R50.3, with the Poincare´ plot in the (x,f) plane ~i! f
modulo 2p and ~ii ! f modulo 4p indicating the transition from
chaotic to quasiperiodic attractors via SNA through Heagy-Ham
~HH1! mechanism:~a! torus-doubled attractor forh50.184; ~b!
strange nonchaotic attractor forh50.181.



a
nt
g

di
to

n
i

us
se
g.

in
n

e

S3
l

y-
ion

3648 PRE 61VENKATESAN, LAKSHMANAN, PRASAD, AND RAMASWAMY
Although in the infinite time limit all distributions will go
to ad function @see Eq.~A2!#, for finite timesP(t,l) can be
very different for SNAs created through different mech
nisms@8,23#. In particular, when the dynamics is intermitte
@30#, the exponential tails in the distribution persist for lon
times. Shown in Fig. 12~a! are distributionsP(2048,l) for
the two intermittent transitions discussed here. Both the
tributions have an asymmetric tail which extends well in
the locally chaotic~i.e., Lyapunov exponentL.0) region,
even for such a long time interval. This correlates with e
hanced fluctuations in the Lyapunov exponent on interm
tent SNAs. On SNAs formed by the fractalization or tor
collision mechanisms, in contrast, similar densities are es
tially Gaussian@23#; these are shown for comparison in Fi
12~b!.

In order to quantify the slow decay of the positive tail
the distribution for intermittent SNAs, we define the fractio
of positive local Lyapunov exponents@30# as

FIG. 8. Transition from doubled torus to SNA through Heag
Hammel mechanism in the region HH1:~a! the behavior of the
Lyapunov exponent (L); ~b! the variance (s).
-

s-

-
t-

n-

F1~ t !5E
0

`

P~ t,l!dl. ~7!

Clearly, limt→`F1(t)→0. Empirically, it has been found
@23,30# that on an intermittent SNA, this quantity shows th
large t behavior

F1~ t !;t2b; ~8!

we find numerically that exponents in both the S1 and
regions areb'1 @31#. For fractalized or Heagy-Hamme
SNAs, the approach is exponentially fast:

F1~ t !;exp~2gt !. ~9!

Note that in the long-time limit, all distributions will col-
lapse to the Gaussian, so that, for very long times,t→`, F1

FIG. 9. Projection of the two-frequency attractors of Eqs.~2!–
~4! for R50.47, with the Poincare´ plot in the (x,f) plane ~i! f
modulo 2p and ~ii ! f modulo 4p indicating the transition from
chaotic to quasiperiodic attractors via SNA through fractalizat
~GF1 and GF2!. ~a! strange nonchaotic attractor forh50.0558
~GF1!; ~b! wrinkled attractor forh50.065; ~c! strange nonchaotic
attractor for h50.072 ~GF2!; ~d! torus-doubled attractor forh
50.0729.
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will decay exponentially on all SNAs. The exponentsb and
g depend strongly on the system parameters.

IV. CONCLUSION

On SNAs, as a consequence of the fractal geome
stable and unstable regions are interwoven in a complic
manner. Thus, although trajectories with different initial co
ditions will eventually coincide with each other@32# since
there are no positive Lyapunov exponents, they do so in
intermittent fashion, unlike the case of quasiperiodic attr
tors, converging in locally stable regions and diverging
locally unstable regions.

In this paper we have described the transition from q
siperiodic attractors to chaos through different types

FIG. 10. Transition from torus to SNA through a gradual fra
talization mechanism indicating~i! the behavior of the Lyapunov
exponent (L) and ~ii ! the variance (s) ~a! in the region GF1 and
~b! in the region GF2.

FIG. 11. Transition from gradual fractalization~GF3 region!
type of SNA to Heagy-Hammel~HH1 region! type of SNA for h
50.1675: ~a! SNA ~GF3 region! for R50.1955; ~b! SNA ~GF3
region! for R50.197; ~c! SNA ~HH1 region! for R50.1974; ~d!
SNA ~HH1 region! for R50.203.
y,
ed
-

n
-

-
fSNAs in a protypical example, namely, the two-frequen
parametrically driven Duffing oscillator. We have dema
cated the different regions in parameter space where th
different dynamical states can be located. There are sev
mechanisms through which SNAs are formed here, two
which appear to be quasiperiodic analogies of intermitte
transitions in unforced systems@17#. In addition to these, we
also find evidence of the torus collision route to the SNA
well as fractalization.

To distinguish among the different mechanisms throu
which SNAs are created, we examined the manner in wh
the maximal Lyapunov exponent and its variance change
a function of the parameters. In addition, we have also
amined the distribution of local Lyapunov exponents, a
found that on different SNAs they have different charact
istics. Our analysis confirms that in intermittent SNAs, t
signature of the transition is a discontinuous change in b
the maximal Lyapunov exponent and in the variance. F
ther, the two different intermittency routes are distinguish
by their different scaling behaviors. The chaotic compon
on both types of intermittent SNAs is long lived, giving, as
consequence, a slowly decaying positive tail inP(N,l) and
a resulting power-law decay forF1(N).

Since the driven Duffing system can be experimenta
realized in a driven magnetoelastic ribbon, the present w

FIG. 12. Distribution of finite-time Lyapunov exponents o
SNAs created through~a! type-III ~dashed line! and type-I intermit-
tencies ~solid line!, with t52048, and ~b! torus collision ~the
Heagy-Hammel route! ~dotted line! and fractalization~solid line!.
The parameter values are those of Figs. 3~c!, 5~b!, 7~b!, and 11~a!,
respectively.
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can help in identifying different conditions under whic
SNAs can be found in a typical system. The study
SNAs—from both theoretical and experimental points
view—is in its initial stages, and the present study may aid
the realization of different bifurcation routes to SNA in e
perimental systems.
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APPENDIX: FINITE-TIME LYAPUNOV EXPONENTS

The largest Lyapunov exponentL which measures the
rate of separation of nearby trajectories can be computed
a standard algorithm@21#. This is an asymptotic quantity
and is a long~in principle infinite! time average of the loca
rate of expansion in phase space. The finite-time or lo
Lyapunov exponentl i(t) is defined in an analogous mann
@30,33#, except that it is computed over a finite-time interv
t. The subscripti indexes the segment~that is, in effect, the
initial conditions! in which this exponent is evaluated.
given trajectory is thus divided into segments of lengtht,
and, in each of these, the local Lyapunov exponentl i(t) is
computed.

As the finite-time Lyapunov exponents depend on the
A.

C

l.

A

f
f
n

.

f

ia

al

,

i-

tial conditions, we consider the probability distribution
P(t,l), defined as

P~ t,l!dl[ @Probability that l i~ t ! takes a value between

l and l1dl#. ~A1!

This distribution is a stationary quantity, and is particula
useful in describing the structure and dynamics of nonu
form attractors@28,29#. In the asymptotic limitt→`, this
distribution will collapse to ad function:

P~ t,l!→d~L2l!. ~A2!

The deviations from this limit for finite times, and the a
ymptotics, namely, the approach to the limit, can be ve
revealing of the underlying dynamics@30#.

From this distribution, one can calculate the variance
the Lyapunov exponentL as

s5E
2`

`

~L2l!2P~ t,l!dl. ~A3!

Equivalently, one can obtain the variance as

s5
1

M (
i 51

M

„L2l i~ t !…2; ~A4!

that is, from a set ofM finite-time Lyapunov exponents. In
our numerical calculations in Sec. II, for instance, we ta
t550 andM>105.
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